

AnaPico AG
www.anapico.com

APSIN3000

Getting Started
Page 1 of 10

APSIN x000 API Description

Contents

1. Introduction to the APSIN3000 ..2
2. Application Programming Interface...3
3. Accessing the DLL with Matlab™ ..7
4. An C example program using the DLL ...8

Company Details ..10

AnaPico AG
www.anapico.com

APSIN3000

Getting Started
Page 2 of 10

1. Introduction to the APSIN3000
AnaPico allows customer access to Instrument DLLs for use with alternate interface and control

programs. The AnaPico apsinx000.dll allows direct access to the APSIN product family through

any software that can call a standard C.

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 3 of 10

2. Application Programming Interface

The AnaPico application programming interface (API) consists of the following files:

Apsin3000_lib.h

Apsin3000_lib.lib

Apsin3000_lib.dll

The header file defines the following constants:

#define VI_SUCCESS 0x00000000
 // Operation completed successfully

#define VI_SUCCESS_MAX_CNT 0x3FFF0006

 // Number of bytes read is equal to the input count

#define VI_ERROR_SYSTEM_ERROR 0xBFFF0000

 // Unknown system error

#define VI_ERROR_TMO 0xBFFF0015
 // Timeout expired before operation completed

#define VI_ERROR_CONN_LOST 0xBFFF00A6
 // Connection for the given session has been lost

#define VI_ERROR_FILE_ACCESS 0xBFFF00A1
 // Error occurred while trying to open the specified file.

// Possible reasons include an invalid path or lack of access rights

The library provides the following commands:

apsin_find
int apsin_find(char* devices, unsigned int tmo, int count, int *retCount)

Locates devices in the same LAN subnet (sends broadcast message) and writes
information about the located devices into *devices.

Parameters:

devices: pointer to a buffer for the found devices string.

tmo: search timeout, in ms

count: size of the supplied buffer, in bytes

retCount: pointer, returning the number of bytes written into the devices buffer,

 excluding the NULL-termination. Can be NULL.

Return Values:

VI_SUCCESS: successful

VI_ERROR_SYSTEM_ERROR: socket allocation failed

The returned devices string will be formatted as follows:

"Instr Name:Serial No:IPv4 Addr;Instr Name:Serial No:IPv4 Addr;..."

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 4 of 10

Each valid device will be identified with the instrument name, the instrument’s serial

number, and the IPv4 adress. The individual devices are separated with a “;”

(semicolon). If no devices were found, the buffer will be an empty string "" and

retCount will be 0.

Example:

 char buf[512];

 int retCount;

 apsin_find(buf, 2000, 512, &retCount);

 printf(buf);

will wait 2 seconds for devices to react on a broadcast call. If 3 devices were found, the
output could be:

"INSTR0:31132200000016:192.168.1.55;INSTR0:61132200000049:192.168.1.49;INST

R0:62232211000003:192.168.1.46;"

apsin_sock_open
int apsin_sock_open(char* ipAddr, int port, unsigned int tmo, int* sock_id)

Opens a TCP socket connection to the specified IPv4 address and port.

Parameters:

ipAddr: IPv4 address string (e.g. "192.168.1.50").

port: TCP port, default is 18.

tmo: connection timeout in ms, usually >= 1000.

sock_id: pointer, returning the unique socket ID.

Return Values:

VI_SUCCESS: successful

VI_ERROR_SYSTEM_ERROR: socket allocation failed, connection refused by device, or no

 device listening at specified address.

Description:

Opens a TCP socket connection to the specified IPv4 address and port. The connection

will be up until apsin_sock_close() is called. After opening, calling

apsin_sock_close() is mandatory before exiting the program.

apsin_sock_close
int apsin_sock_close(int sock_id)

Close a TCP socket connection.

Parameters:

sock_id: unique socket ID

Return Values:

VI_SUCCESS: successful

VI_ERROR_SYSTEM_ERROR: invalid socket ID (no socket connection)

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 5 of 10

apsin_sock_clear
int apsin_sock_clear(int sock_id)

Clears the socket receive buffer.

Parameters:

sock_id: unique socket ID

Return Values:

VI_SUCCESS: successful

VI_ERROR_SYSTEM_ERROR: invalid socket ID (no socket connection)

apsin_sock_gets
int apsin_sock_gets(int sock_id, char* buf, int count, int *retCount)

Receive a string from a device.

Parameters:

sock_id: unique socket ID

buf: pointer to the buffer for the string received from the device

count: buffer size, in bytes

retCount: pointer, returning number of received bytes, can be NULL

Return values:

VI_SUCCESS: successful

VI_SUCCESS_MAX_CNT: response string is too long for the supplied buffer. Only

 count characters were stored in the buffer, and the buffer is

 not NULL-terminated. The remaining characters can be read
 by calling the function again.

VI_ERROR_CONN_LOST: Connection lost, nothing was received

Description:

Use this function to receive requested data information from the APSIN.

apsin_sock_puts
int apsin_sock_puts(int sock_id, char* buf, int count, int *retCount)

Sends a string to a device.

Parameters:

sock_id: unique socket ID

buf: string being sent to the device

count: string length, can be 0 if string is terminated with NULL or line feed '\n'

retCount: pointer, returning number of sent bytes, can be 0

Return values:

VI_SUCCESS: successful

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 6 of 10

VI_SUCCESS_MAX_CNT: String is too long. Only the first 1024 characters were sent.

 The remaining characters must be sent again. No
 termination character was sent.

VI_ERROR_CONN_LOST: Connection lost, nothing was sent

Description:

Send a string to a device. The string will be terminated according to the SCPI rules.

NULL or "\r\n" (carriage-return line-feed) will be replaced with "\n". Data located after

those termination characters will be ignored. If the string contains no termination

character, the function will terminate the string with '\n' after count characters.

Up to 1024 characters can be sent, including the string terminator.

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 7 of 10

3. Accessing the DLL with Matlab™

The commands used in Matlab™ to access DLLs are as follows:

Loadlibrary Loads a dll

Unloadlibrary Unloads a dll

Libisloaded Checks to see if a library is loaded

Calllib Calls a loaded dll function

To open the apsin3000_lib.dll, the following code sequence is used:

if libisloaded('apsin3000')==1,

 disp(' apsin3000 library is Loaded');

end

if libisloaded('apsin3000 ')==0,

 disp('Loading Library...');

 loadlibrary apsin3000_lib.dll apsin3000_lib.h alias apsin3000

loadlibrary('apsin3000_lib.lib','apsin3000_lib.h');

 ipaddr = '192.168.1.50';

 socket_id = calllib('apsin3000', 'apsin_sock_open',

libpointer('cstring',ipaddr), size(ipaddr,2), 18, 0);

 pause(1);

 if (sock_id < 0) || (size(ipaddr,2) < 4)

 fprintf(1,'\n Unable to connect, quitting.\nPlease

verify LAN connection...\n');

 return

 end

disp('Connection is established’);
end

The “libisloaded” command checks to verify if the library has already been loaded.

Therefore, this section of code can always be put in front of other commands rather than

having to include separate scripts.

The “loadlibrary” command loads a DLL and the associated header. This command and

header must be in the Matlab™ working directory or in a path that will Matlab™

recognize. Note that the name of the DLL can be aliased. In the above code, it has been

aliased to “apsin3000”. The “calllib” function calls out a function that is listed in the

header and contained within the DLL.

The “apsin_sock_open” function is used here to open communications with the

apsin3000. Note that the IP number of the device must be used to call the device and it

is sent as a string. We use an IP 192.168.1.50 in the above example. While using the

“apsin_sock_open” function, a 0 is returned if successful, a <0 if unsuccessful.

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 8 of 10

4. An C example program using the DLL

#include <stdio.h>

#include <stdlib.h>

#include "apsin3000_lib.h" // APSIN communication library

#define DEV_STR_LEN 512 // device communication buffer size

#define TCP_PORT 18 // TCP port for socket connection

int main()

{

 char buf[DEV_STR_LEN];

 char ipAddr[32];

 int retCount, sock_id;

 /**

 * Open connection to device (to known IP address)

 **/

 printf("Enter IP: ");

 scanf("%s", ipAddr);

 printf("\nOpening connection to %s on port %d\n", ipAddr, TCP_PORT);

 if (apsin_sock_open(ipAddr, TCP_PORT, 1000, &sock_id) != 0)

 {

 printf(" opening connection failed - enter to quit\n");

 getchar();

 return -1;

 }

 /**

 * Communicate with device - commands and queries

 **/

 printf("\nSending command: FREQ 1000000\n");

 apsin_sock_puts(sock_id, "FREQ 1000000\n", 0, NULL);

 printf("\nSending command: POW 0\n");

 apsin_sock_puts(sock_id, "POW 0\n", 0, NULL);

 printf("\nSending command: OUTP ON\n");

 apsin_sock_puts(sock_id, "OUTP ON\n", 0, NULL);

 printf("\nSending query: *IDN?\n");

 apsin_sock_puts(sock_id, "*IDN?\n", 0, NULL);

 buf[0] = '\0';

 apsin_sock_gets(sock_id, buf, DEV_STR_LEN, NULL);

 printf(" query response: %s", buf);

 /**

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 9 of 10

 * Close connection

 **/

 printf("\nClosing connection - enter to quit\n");

 apsin_sock_close(sock_id);

 getchar();

 return 0;

}

AnaPico AG

www.anapico.com

APSIN3000

Getting Started
Page 10 of 10

Company Details

Address: AnaPico AG

Technoparkstr. 1

8005 Zurich

Switzerland

Phone: +41 (44) 440 00 51

Fax: +41 (44) 440 00 50

Email:

Technical Support: support@anapico.com

Sales: sales@anapico.com

Web site: www.anapico.com

